
tioners and researchers. At the 1993 Transportation Planning Applica-
tions Conference, the first author organized a session on this topic,
which led to the computational experiments reported by Boyce et al.
(2). Subsequently, Comsis undertook a study of how to incorporate
feedback in travel forecasting (3); the results were inconclusive.
Recently, however, Boyce and Xiong performed computational
experiments that appeared to be more promising (4).

In all these investigations, the apparent difficulties stemmed
from the question of just how to perform the feedback calcula-
tions in the sequential procedure. The experiments of Boyce et al.
(2) and Comsis (3) demonstrated that it is ineffective to feed back the
travel costs directly from the previous loop (naïve feedback, some-
times called direct feedback). Clearly, some sort of averaging between
successive loops is required. But what should be averaged? Various
investigators have averaged link flows, link costs, or even link speeds.

To gain a clearer view of the problem, the goal should be recon-
sidered. The goal is to find a multimodal trip matrix that depends in
part on interzonal generalized modal travel costs (linearly weighted
sums of travel times, operating costs, tolls or fares). For congested
modes (typically, car), these travel costs should be either costs 
of the shortest routes or average costs of used routes, depending 
on whether a link-based or a route-based assignment algorithm is
applied. To achieve this objective, a multimodal trip matrix, partly
dependent on modal travel costs, is sought, which if assigned to the
multimodal network yields those same costs. This problem statement
suggests that one should focus on finding the multimodal trip matrix
that satisfies this criterion rather than focus on link flows or costs.
This line of thinking led to a feedback procedure that involves aver-
aging of trip matrices. Persons with a mathematical background may
recognize this as the statement of a fixed-point problem (5, 6).

This paper reports on tests of three ways of averaging successive
trip matrices:

1. Averaging with constant weights (sometimes referred to as
fixed weights);

2. Averaging with the method of successive averages (MSA), in
which the weight on each new solution matrix decreases with each
feedback loop; and

3. Naïve feedback (constant weight averaging with a weight of
1.0 on the new matrix).

DESCRIPTION OF MODEL

The Capital District Transportation Committee (CDTC) is the metro-
politan planning organization for the New York State counties of
Albany, Rensselaer, Saratoga, and Schenectady, which have a total
population of about 800,000, primarily in the central cities of Albany,
Troy, Schenectady, and Saratoga Springs and the contiguous suburban
development, as shown in Figure 1. CDTC has 25 members, including
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Travel forecasters generally understand that an iterative solution of the
sequential travel forecasting procedure is required to bring specific model
inputs and outputs into consistent agreement. In particular, the congested
interzonal travel time inputs to the trip distribution and mode choice
steps should equal the user-equilibrium travel times obtained from the
assignment step. The process of achieving consistency is called solving
the sequential procedure with feedback. The Capital District Transporta-
tion Committee of Albany, New York, maintains a travel forecasting
model with 1,000 traffic analysis zones. This model was used to evaluate
feedback procedures for three applications drawn from its planning activ-
ities. Three alternative feedback solution procedures were applied to the
model: (a) naïve or direct feedback (no averaging of trip matrices or link
flows), (b) averaging of trip matrices with constant weights, and (c) the
method of successive averages (MSA) applied to trip matrices. The
convergence of the feedback procedures was measured by comparing
the results as follows: total misplaced flow (trip matrices), relative gap
(route-based user-equilibrium traffic assignments), and root squared
error (travel cost matrices). The test results showed that (a) averaging of
trip matrices by using constant weights converges to a single, stable solu-
tion with consistent travel costs; (b) a single pair of weights is most effec-
tive for all three applications; (c) neither naïve feedback nor MSA is as
effective as use of constant weights; and (d) the relative gaps of the traffic
assignment reach values of less than 10-7. Tests with different models and
software systems are needed to generalize the findings.

Travel forecasters have understood since the first conceptualiza-
tion of the sequential travel forecasting procedure (also called the
four-step procedure) during the 1950s that an iterative approach is
required to bring the inputs and outputs of specific models into con-
sistent agreement with each other (1). In particular, the congested
interzonal travel costs (shortest route travel times, or skims) which
are input to the trip distribution and mode choice steps should equal
the user-equilibrium travel costs resulting from the solution of the
assignment step. The iterative process of achieving consistency
between these input and output travel costs is generally referred to
as solving the sequential procedure with feedback.

Although the need to solve the four-step procedure iteratively was
apparent, how to solve this problem has confounded numerous practi-
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the New York State Department of Transportation (NYDOT), the New
York State Thruway Authority, the Capital District Transportation
Authority, the Capital District Regional Planning Commission,
the Port of Albany, Albany International Airport, and elected offi-
cials from counties, cities, and towns. CDTC made extensive use of
its regional travel forecasting model in preparing its New Visions
Regional Transportation Plan, as well as for its Community and Trans-
portation Planning Linkage Program, evaluation of Transportation
Improvement Program project candidates, and development of perfor-
mance measures. CDTC also provides traffic forecasts to NYDOT for
project development. Forecasts assume steady progress in the integra-
tion of land use and transportation plans, urban reinvestment, demand
management, and pedestrian, bicycle, and transit access.

The current travel model includes five trip purposes through trip
generation and trip distribution, which are augmented by through
traffic. The trip distribution models are doubly constrained gravity
models with negative power functions. The only mode currently rep-
resented in the model is car travel; public transit is not yet included
in the model. Vehicle assignments are computed for the evening
peak hour utilizing capacities defined on Level of Service C vol-
umes, not only on links but also on turns to emulate intersection
delay. The network has 1,000 zones, 10,000 links, 4,000 nodes, and
21,000 turns with volume-delay functions. CDTC’s modeling prac-
tice is based on VISUM; the tests reported here were computed with
VISUM 10.0 (7 ). The computer used to solve the model was an off-
the-shelf Windows PC with a 2.0-GHz processor and 2.0 GB of
random-access memory, purchased in 2006.

Three applications of the model are considered:

1. Base—model calibration with the 2000 census;
2. Plan—2030 forecast for the planned network; and
3. Base_1.5—derived from the base by multiplying productions

and attractions by a factor of 1.5 to obtain a more congested appli-
cation for these tests.
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FEEDBACK METHOD

The proposed feedback procedure is depicted in Figure 2 for a
problem with a single congested mode (car) operating on a road net-
work. The initial solution to the four-step procedure is represented
by Box 2, consisting of trip distribution and assignment, given an
assumed travel cost matrix and the zonal origin and destination
totals by trip purpose in Box 1. Box 3 represents the general solu-
tion of the trip distribution model in loop k based on the travel cost
matrix computed from the assignment of the averaged trip matrix in
loop k − 1; in Loop 2, the trip distribution is solved by using the
travel costs from the initial solution (Loop 1) in Box 2. In Box 4, this
new trip matrix from Box 3 is averaged with the trip matrix from
the previous loop k − 1, yielding the averaged trip matrix of loop k.

FIGURE 1 CDTC travel forecasting model network.

1. Input data:
(Oi) and (Dj) by trip purpose for zones i, j

Road network

2. Compute the initial solution (Loop 1):
Initialize travel times/costs ⇒ cij (1)

Solve trip distribution ⇒ eij (1)= dij (1)

Assign dij (1) to road network ⇒ fa(1)

4. Average trip matrices dij (k –1) and eij (k):

   CW:  eij (k), ordij (k –1)+wdij (k)= (1– w )

   MSA: dij (k)= eij (k)
k

dij (k –1)+
k

k –1 1

5. Assign dij (k) to the road network to the

desired level of convergence ⇒ fa(k)

6. Check convergence of eij (k) to dij (k –1):

TMF = 
ij

≤ Ε, or

RSE = 

1/2

ij

dij (k –1) –eij (k) 2

dij (k –1) –eij (k)

If converged, STOP; if not, set k = k + 1. 

k: Loop index   w: Constant weight
Feedback convergence target 
Averaged matrix for assignment

eij (k):

dij (k):

New matrix from distribution

TMF:

E:

Total misplaced OD flow
RSE:   Root squared OD error
MSA: Method of successive averages
CW:    Constant weights

3. Compute the solution for Loop k:
Compute costs of used routes ⇒ cij(k)

Solve trip distribution ⇒ eij (k)

∑

∑

≤ Ε

FIGURE 2 Procedure for averaging matrices: 
(O � origin, D � destination).



(Technical terms for the averaged and new matrices are main problem
solution and subproblem solution, respectively.)

Averaging may be performed with constant weights with a weight
of (1 − w) on the averaged matrix and a weight of w on the new
matrix. Alternatively, MSA can be applied; the weight on the aver-
aged matrix is then (k −1)/k, and the weight on the new matrix is 1/k,
which is called the step size. Naïve feedback is a special case of con-
stant weights with (1 − w) = 0 and w = 1. The averaged matrix is
assigned to the road network (Box 5), and a convergence test is
performed in Box 6 to test whether the two matrices averaged in
Box 4 are effectively equal. MSA can be mathematically proved
to converge to the desired consistent solution, but convergence
may be very slow. Averaging with constant weights has not been
proved to converge.

Two useful convergence measures, total misplaced flow (TMF)
and root squared error (RSE), are defined in the flowchart. (As both
measures yield essentially the same pattern, mainly TMF is shown in
the results.) If the convergence measure selected is not sufficiently
small, the procedure returns to Box 3 and begins again. Note that
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only trip matrices are averaged; link flows, link costs, and zone-to-
zone costs are computed from the assignment in Box 5 and used
directly in solving the trip distribution model again.

COMPUTATIONAL RESULTS

Convergence of Solution Procedure

For each of the three applications, solutions with various weights were
computed: constant weights with values of w ranging from 1.0 down
to 0.3 plus MSA. TMF in vehicles per hour (vph) is plotted in log scale
versus computational time in minutes for the base application in
Figure 3; equivalent results were obtained for the two other applica-
tions and therefore are not shown. Various symbols depict results for
each loop. Figure 4 shows a comparison of the base application with
the plan and base_1.5 applications for the most effective constant
weights (w = 0.75) as well as MSA and naïve feedback. For more
values of w, see www.trb-appcon.org/2007conf/program.html#s2.
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FIGURE 4 Convergence for three applications.



The patterns in the reduction of TMF are similar for the three
applications for values of w of 0.5 to 0.8. A value of 1.0 is much less
effective, especially in the most congested application, Base_1.5.
MSA is ineffective in all three applications. Note that a w value of
0.5 is quite effective after 20 loops but somewhat ineffective earlier.
In addition to the stability of the overall patterns, it is important
that a w value of 0.75 is effective for all three applications, imply-
ing that the same constant weights can be applied to all future plan
scenarios, adjustment of the constant weights for each scenario being
unnecessary.

MSA was adopted by many practitioners, evidently because of its
mathematically proved convergence properties. However, few tests
of convergence appear to have been conducted with models used in
practice. Moreover, MSA has often been applied to average succes-
sive link flows, which is essentially a form of smoothing of the inputs
to the trip distribution model, and may not yield a consistent trip
matrix. Why MSA is ineffective for these applications is unknown
and requires further study.

To consider how many feedback loops are required for practical
applications of the method, see Figure 5. For any method, the
minimum number of feedback loops is three: the initial solution, a
second loop to determine the level of disparity from the initial solu-
tion, and a third loop to check whether averaging of the first two
solutions is adequate. The real question, then, is how many more
loops are needed. For a w value of 0.75, at Loop 4 TMF is reduced
to 4,500 vph, or 1.4% of the total origin–destination (O-D) flow of
313,310 vph. Loop 5 reduces TMF to 1,100 vph or 0.4%, which
appears sufficient for comparisons of alternative plans. In contrast,
MSA results in a TMF of more than 17,600 vph or 6% of total flow
after five loops with a similar solution time for a w value of 0.75.
Naïve feedback (w = 1.0) has a TMF of 27,200 vph, or 9% of total
flow with a higher solution time. Naïve feedback is much slower
because more assignment iterations are required to reach the spec-
ified level of assignment convergence. TMF should be less than
1% of total O-D flow.

For all three applications, five feedback loops with a w value of
0.75 are sufficient to achieve a reduction in TMF to less than 1% of
total flow. At this point in the solution process, however, the rate
of improvement in TMF from additional feedback loops is very
high, so that one or two more loops may well be worthwhile for this
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best value of w. In contrast, the rate of improvement in TMF is slow
for MSA and naïve feedback.

Unique Trip Matrix Solution

An important question raised about these results concerns whether
the proposed averaging procedure converges to the same trip matrix
for the various weights applied. To investigate this matter, the feed-
back procedure was solved with a w value of 0.5 for 100 loops, yield-
ing a precisely converged solution with TMF = 0.003. Then, the
procedure was applied with values of w ranging from 1.0 down to
0.3, as well as MSA for 20 loops. The sum of the absolute differences
in cell values between each trip matrix and the precisely converged
matrix was computed at the conclusion of each loop.

Figure 6 shows the results of this computational experiment. For
all of the constant weights, except w values of 1.0 and 0.3, the trip
matrix converges to a very close approximation of the precisely con-
verged matrix. For naïve feedback and MSA, convergence is not
achieved; however, it might be achieved after a very large number
of feedback loops. In Figure 6, the x-axis shows the number of feed-
back loops, rather than computational time, because the computa-
tional times are not comparable to Figures 3 through 5. Moreover,
plotting the result in this manner facilitates the comparison of the
total differences in flow at each feedback loop. It is concluded from
this experiment that all constant weight methods between values of
w of 0.4 and 0.9 enable the sequential procedure to converge quickly
toward the same unique trip matrix.

Convergence of Travel Cost Matrices

In addition to examining the convergence of trip matrices, which
partly depends on the zone-to-zone travel costs, whether the succes-
sive travel cost matrices are converging to a stable value also should
be determined. To examine whether this criterion is satisfied, the
RSE of pairs of successive travel cost matrices were computed. The
results for the plan are shown in Figure 7. Similar plots were obtained
for the other two applications. Note that the cost matrices computed
from the route-based assignment are the flow-weighted average costs
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over all used routes, not the costs of the current shortest routes as
found in link-based assignments.

In the initial solution, free-flow travel times are used to compute
the first trip distribution. The second trip matrix is then based on the
average travel costs from a multipath assignment of the initial trip
matrix. The RSE for these two travel cost matrices is 17,300 min,
as shown by the first cluster of points in the upper left of Figure 7.
For the best w value of 0.75, RSE decreases sharply to a value less
than 1. For MSA and naïve feedback, RSE decreases more slowly,
again suggesting these methods do not converge as quickly as the
best constant weights.

Convergence of Traffic Assignments

Each loop of the iterative sequential procedure requires the solu-
tion of an assignment problem, which is an iterative procedure in
itself. In these tests the assignment is solved with a route-based
user-equilibrium method described by Bothner and Lutter (8) and

Schittenhelm (9), rather than the link-based methods generally
found in other travel forecasting software systems.

The route-based algorithm, in contrast to link-based methods,
stores all routes that belong to the current solution. The knowledge
of routes, and of the relationships between routes and links, is used
to shift O-D flows among alternative routes until the route costs are
equal and minimal for each O-D pair; this shifting of route flows
is called balancing. In its outer iteration the assignment algorithm
performs (a) a shortest route search for all O-D pairs; (b) several
inner iterations of balancing over all O-D pairs, including simulta-
neously updating the link and turn travel times; and finally (c) a con-
vergence test defined on the maximum relative gap (RG). The user
of the route-based assignment controls the maximum number of
outer loops, the maximum number of balancing iterations per main
loop, and the level of RG as a stopping criterion. The settings for
these tests are unlimited number of outer loops; maximal number of
balancing iterations less than or equal to 3; and RG < 10-5 (for the
initial solution, RG < 10-1).
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The convergence of the assignment steps is shown in Figure 8.
The level of assignment convergence (measured by the RG) achieved
is far better than what most practitioners are able to achieve with
link-based methods [typically on the order of 10-3, as described by
Boyce et al. (10)]. For the most efficient feedback methods (CW
with w values between 0.5 and 0.9), the RG decreases to 10-7 after 15
to 20 feedback loops in all three applications. After six feedback
loops, a very stable assignment with an RG less than 10-6 is reached,
which means that relatively little noise would be found if two plan
alternatives were compared.

In the later feedback loops the RG decreases well beyond the
stopping criterion of 10-5. During each loop, the route flow from
the previous assignment is adjusted with the updated averaged
trip matrix (called a reload). After each reload the algorithm per-
forms a minimum of two route searches and a several balancing
steps, which is why the assignments continue to improve below the
stopping criterion.

Effect of Initial Travel Cost Assumption

In all of the reported results, free-flow travel costs were used to find
the initial trip matrix. Suppose a travel cost matrix from a related
problem was used instead. Would the convergence of the feedback
procedure be improved? To explore this question, the feedback pro-
cedure was initiated with a previous solution to a similar problem.
For the best constant weights, relatively little improvement was
observed with this approach.

Effects of Level of Congestion

The applications considered in this paper were performed on a zone
system and road network for a medium-size metropolitan region
(800,000 population) with moderate levels of congestion during the
peak hour in the base year. Practitioners from larger metropolitan
areas have questioned whether the findings are applicable to more
congested conditions. Although unable to answer this question, the
congestion levels for the three applications are documented here
for comparison with future findings. Table 1 shows some key indi-
cators of the size of the problem, the number of links and turns with
volumes (v) in excess of 1.25, and the space–mean–speed (vehicle
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miles traveled–vehicle hours traveled). The capacities (c) in the
volume-delay functions in this model are set for level-of-service C.
Therefore, a volume greater than or equal to 1.25 times the capacity
is equivalent to level-of-service E or F.

In the CDTC model, travel times are not only based on link delays,
but also on intersection delays, where intersection delays are modeled
by turn-based volume-delay functions. Table 1 shows that turn delays
contribute more to overall network delay than link delays. Experience
with other link- and turn-based models has shown that during the equi-
librium assignment and feedback iterations, the volume-to-capacity
ratios are higher on the turns than on the links.

CONCLUSIONS AND RECOMMENDATIONS

From the tests conducted for three applications, the following
conclusions are drawn:

1. Averaging the trip matrix by using constant weight values of
w in the range of 0.5 to 0.8 yields stable and highly converged solu-
tions to the problem of solving the sequential procedure with feed-
back. This result agrees with the findings of Bar-Gera and Boyce (6)
for a research model with well-defined convergence properties.

2. The same w values of 0.75 were highly satisfactory for three
applications with quite different congestion levels. This finding is sig-
nificant because it suggests weights that are good for one application
can be transferred to another application without extensive testing.
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TABLE 1 Characteristics of Networks and Solutions

Indicator Variable Base Plan Base_1.5

Total O-D flow (vph) 207,540 233,100 311,310

No. of links with capacities 9,760 9,790 9,760

No. of links with v/c >1.0 280 420 830

No. of links with v/c >1.25 80 140 340

No. of turns with capacities 21,300 21,390 21,300

No. of turns with v/c >1.0 250 350 660

No. of turns with v/c >1.25 100 300 150

Space–mean–speed (mph) 34.1 31.9 27.4



3. Performing feedback without averaging (naïve feedback) is
relatively ineffective and should not be used. The method of succes-
sive averages is much less effective than use of constant weights in
these tests. MSA should be used only if constant weights have been
shown to be ineffective, as could happen with another model.

4. For the tests conducted, performing five feedback loops was
effective in reaching convergence, as measured by TMF. Additional
loops improved the convergence to some extent; divergence of the
solution was not observed.

5. Tests are required for each practitioner’s model to determine the
effective number of feedback loops. As a general guideline, the ratio
of TMF to the total flow among all origins and destinations should
be less than 1%.

6. Procedures using link-based algorithms for vehicle assignment
may need more feedback loops because the assignment often is unable
to achieve precise convergence levels.

The experience accumulated to date with VISUM pertains to three
applications solved with the CDTC model. Additional tests with
more complex models and other software systems are needed to
generalize these findings further. Practitioners are urged to perform
their own tests and report them such that findings across models,
networks, and software systems can be compared.
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